Capacidad de los Molinos Eclipse 8, 10 y 12 pies

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Potencia Total</th>
<th>Altura del Viento</th>
<th>Apert.</th>
<th>Giro/100 pies</th>
<th>Cíclos/100 pies</th>
<th>Apert.</th>
<th>Giro/100 pies</th>
<th>Cíclos/100 pies</th>
<th>Apert.</th>
<th>Giro/100 pies</th>
<th>Cíclos/100 pies</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 pies</td>
<td>655</td>
<td>90</td>
<td>30</td>
<td>20</td>
<td>278</td>
<td>30</td>
<td>10</td>
<td>278</td>
<td>30</td>
<td>10</td>
<td>278</td>
</tr>
<tr>
<td>10 pies</td>
<td>740</td>
<td>93</td>
<td>34</td>
<td>21</td>
<td>278</td>
<td>34</td>
<td>12</td>
<td>278</td>
<td>34</td>
<td>12</td>
<td>278</td>
</tr>
<tr>
<td>12 pies</td>
<td>860</td>
<td>97</td>
<td>40</td>
<td>12</td>
<td>278</td>
<td>40</td>
<td>15</td>
<td>278</td>
<td>40</td>
<td>15</td>
<td>278</td>
</tr>
</tbody>
</table>

Nota: Basado en una velocidad de viento de 15 millas por hora.

Nota: El tamaño del tubo de acero debe ser mayor que el diámetro del alojamiento del generador.

Capacidad

El tamaño del alojamiento del generador debe ser 16 pulgadas (406 mm) para los modelos 10 y 12 pies. Para el modelo 15 pies, el tamaño del alojamiento del generador debe ser 18 pulgadas (457 mm). Para el modelo 20 pies, el tamaño del alojamiento del generador debe ser 21 pulgadas (533 mm). Para el modelo 25 pies, el tamaño del alojamiento del generador debe ser 21 pulgadas (533 mm).

Galvanized Steel Towers

En cumplimiento con la resistencia del molino de viento, los molinos de viento de Fairbanks-Morse con torres de acero galvanizado están diseñados para evitar la oxidación y resistir el tiempo extremo. Las torres de acero galvanizado resisten el clima y son resistentes a las condiciones adversas del viento.

Table of Tower Weights

<table>
<thead>
<tr>
<th>No. 1 Tower for 60'-75' mill</th>
<th>No. 2 Tower for 60'-75' mill</th>
<th>No. 3 Tower for 60'-75' mill</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Apox. Ht. in.</td>
<td>Apox. Lbr.</td>
</tr>
<tr>
<td>20</td>
<td>256</td>
<td>340</td>
</tr>
<tr>
<td>30</td>
<td>420</td>
<td>500</td>
</tr>
<tr>
<td>40</td>
<td>600</td>
<td>710</td>
</tr>
<tr>
<td>50</td>
<td>800</td>
<td>980</td>
</tr>
<tr>
<td>60</td>
<td>1100</td>
<td>1200</td>
</tr>
<tr>
<td>70</td>
<td>1300</td>
<td>1500</td>
</tr>
<tr>
<td>80</td>
<td>1500</td>
<td>1700</td>
</tr>
</tbody>
</table>

Nota: Los números de código se refieren a piezas de reemplazo disponibles para el molino de viento.
Power from even a light breeze

The Steel Eclipse combines in a commendable way the two chief requirements of good windmill construction—lightness and durability. Every sail in the wheel is carefully curved to get the full benefit of the wind. They are made of hard stiff steel with a re-inforcing corrugation across the outer end. They are riveted to the girts in such a way that they cannot lose their curvature. When bent, they spring back into shape.

The motor or mechanism is accurately machined and thoroughly lubricated so that very little of the wind power is used in overcoming friction of the working parts. The wheel will pump in a light wind when more cumbersome and less carefully built mills would remain at a standstill.

Strength to withstand the storm

And in the storm, when every windmill gets its real test for dependability, the Steel Eclipse operates with its usual ease and steadiness. When the wind reaches a velocity of approximately 15 miles an hour, the governing mechanism comes into play, gradually turning the wheel on its pivot and deflecting the wind more and more until finally when the wind reaches a dangerous velocity, the edge of the wheel only is presented to the wind—in other words, the wheel is “out of gear.”

And all during this action the brake grips the drum on the wheel spider. The harder the wind blows, the tighter the brake holds.

There is a lifetime of service built into the Steel Eclipse.

FAIRBANKS, MORSE & CO. Manufacturers CHICAGO
Note These Added Features

1. Slow Lift, Quick Down Stroke
 The design of the bell crank plunger is such that approximately two-thirds of every crank revolution is used in actually pumping water—the remaining third returns the plunger to the bottom of the well-cylinder. Distributing the actual-pumping load over the extended period of time means that less power is required to move the plunger on the up-stroke; it means that when the wind dies down the plunger will travel a greater distance up the cylinder before it stops. This in turn means a quicker "get-away" for the wheel when the wind again commences to blow. You will appreciate the "slow lift" feature in light winds because it enables the Steel Eclipse to turn when the ordinary windmill is at rest.

2. Simplicity
 Simplicity is a keynote of Steel Eclipse design. The few working parts, the ruggedness of construction, the dependability of the lubrication system, all contribute to the satisfactory operation of the mill.

3. Self-governing
 No chance for the wheel or mechanism to wreck itself. The wheel speed is almost constant in a wind of 15 miles up to the throw-out velocity of 25 miles per hour. You do not have to get out in the storm to throw the mill out of gear.

4. The Tilted Wheel
 In the design of the Steel Eclipse advantage has been taken of the fact that the general direction of the wind is on a slight angle dipping toward the earth. The wheel of the Steel Eclipse is tilted upward slightly to get the full advantage of this dip. The Steel Eclipse will, therefore, get the maximum efficiency out of whatever wind there is blowing.

 This tilting also permits of bringing the wheel in closer to the ground thus eliminating the long overhanging shaft that would otherwise be necessary in order to make the wheel clear the tower.

5. Fully Enclosed
 The entire working mechanism is enclosed in a pivot housing—no foul ears that are apt to be broken, no sharp corners, no bolted-on lugs. Rain, snow, sleet or dirt cannot enter the oil chamber and contaminate the oil.

FAIRBANKS, MORSE & CO. Manufacturers CHICAGO
Self-Oiling—Easy Running—Self-Regulating

A windmill with a ruggedly designed motor, a drop forged crank with turned, ground and polished surfaces, finished worm and gear with machine cut teeth—in fact, regular high grade gas engine construction throughout—is it any wonder the Steel Eclipse is acknowledged the most advanced windmill design of the day?

For three generations the name “Eclipse” has signified the best in windmill construction. The Eclipse mill has thousands and thousands of friends—owners who have secured 20, 30 or more years of satisfactory service. And they are generous in their praise. They will tell you the mill has lived up to all expectations and more. They know from experience the material it is made of the service it will give. And today the Steel Eclipse Windmill—with its high-grade workmanship, its advanced design, its ruggedness, its simplicity—capably fulfills all expectations.

The Steel Eclipse is Self-Oiling

Oil it once a year, and the old troublesome difficulty of windmill lubrication is eliminated—No squeaking of bearings—no rattling of gears. In operation every bearing of the Steel Eclipse is flooded with oil. The large gear revolves in a bath of oil carrying an abundance of oil to the worm and rear wheel shaft bearing. It operates quietly—smoothly—easily. Notice the details of the lubrication system in the illustration opposite.